Calculus 1
Review: Domain, Range, Piecewise and Limits (ans)

Name \qquad
Block \qquad
Fill in the missing information for the following functions.

1) $f(x)=\frac{3 x^{2}-6 x}{x-2}$
2) $f(x)=\frac{2 x^{2}-3 x+1}{3 x^{2}+x-4}$
3) $g(x)=\sqrt{x^{2}-9}$
$\frac{3 x(x-2)}{x-2}$

$$
\begin{aligned}
& \frac{(2 x-1)}{(3 x+4)} \\
& \frac{(2 x-1)}{(3 x+4)}
\end{aligned}
$$

Hole: $(2,6)$
Hole: $\left(1, \frac{1}{7}\right)$
VA: none

HA: none
$H A: y=\frac{2}{3}$

Domain: $(-\infty, 2) \cup(2, \infty)$

Domain: $\left(-\infty,-\frac{4}{3}\right) \cup\left(-\frac{4}{3}, 1\right) \cup(1, \infty) \quad$ Domain: $(-\infty,-3] \cup[3, \infty)$
Range: $(-\infty, 6) \cup(6, \infty)$
Range: $\left(-\infty, \frac{1}{7}\right) \cup\left(\frac{1}{7}, \frac{2}{3}\right) \cup\left(\frac{2}{3}, \infty\right)$
Range: $[0, \infty)$

Use the graph to find the requested values.

4) $\lim _{x \rightarrow-1} f(x)=3-\infty$
5) $\lim _{x \rightarrow-4} f(x \not x)=0$
6) $\lim _{x \rightarrow-1} f(x)=\mathrm{DNE}$
7) $\lim _{x \rightarrow \infty} f(x)=$
8) $\lim _{x \rightarrow-\infty} f(x)=$
9) $f(1)=$
10) $\lim _{x \rightarrow 3^{+}} f(x)=-3$
11) $f(-4)=0$
12) $f(-1)=-1$

Using the given piecewise function, find the requested values and justify your answers.

$$
f(x)=\left\{\begin{array}{ccc}
x^{2}-6 x-2 & \text { if } & x \leq-1 \\
\frac{x^{2}+4}{x+2} & \text { if } & -1<x \leq 3 \\
-2 x+5 & \text { if } & x>3
\end{array}\right.
$$

13) $\lim _{x \rightarrow-1^{-1}} f(x)=5$
14) $\lim _{x \rightarrow-1^{+}} f(x)=5$

$$
\frac{(-1)^{2}+4}{-1+2}=5
$$

15) $\lim _{x \rightarrow-1} f(x)=5$
$(-1)^{2}-6(-1)-2$
16) $\lim _{x \rightarrow 3} f(x)=\mathrm{DNE}$
17) $f(2)=2$
18) $f(4)=-3$
$-2(4)+5$
-3
$\frac{(3)^{2}+4}{3+2}=\frac{13}{5}$
$-2(3)+5$
$\frac{(2)^{2}+4}{2+2}=\frac{8}{4}=2$
19) $\begin{aligned} & \lim _{x \rightarrow 4.5} f(x)=-4 \\ & -2(4.5)+5 \\ & -9+5 \\ & -4\end{aligned}$
20) $f(-1)=5$
$(-1)^{2}-6(-1)-2$
21) $f(3)=\frac{\frac{13}{5}}{}$
$\frac{(3)^{2}+4}{3+2}=\frac{13}{5}$

Find the following limits. If a graphing calculator was used, write how it was used.
22) $\lim _{x \rightarrow-\infty} \frac{x^{2}-2 x-8}{x-4}=-\infty$
23) $\lim _{x \rightarrow 4} \frac{x^{2}-2 x-8}{x-4}=6$
24) $\lim _{x \rightarrow 3} \frac{5 x-9}{x^{2}-5}=\frac{3}{2}$
25) $\lim _{x \rightarrow \infty} \frac{2-6 x-3 x^{2}}{2 x^{3}+8 x-2}=0$
26) $\lim _{x \rightarrow 2} \frac{5 x}{x^{2}+3 x-10}=\mathrm{DNE}$
27) $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$
28) $\lim _{x \rightarrow 1} \frac{x^{2}+9 x-10}{x^{3}-1}=\frac{11}{3}$
29) $\lim _{x \rightarrow \infty} \frac{4 x^{3}-6 x^{6}-6}{5 x^{6}+3 x^{3}-5 x^{2}}=-\frac{6}{5}$
30) $\lim _{x \rightarrow \infty} \frac{x-6}{\sqrt{2 x^{2}+5}}=\frac{\sqrt{2}}{2}$
31) $\lim _{x \rightarrow 1} \frac{x}{|x-1|}=\infty$
32) $\lim _{x \rightarrow 3} 9=9$
33) $\lim _{x \rightarrow-\infty} 4 x-6=-\infty$

Determine if the following functions are continuous or not. If not, state its type discontinuity and where it occurs. If it is removable, then create a new function that is continuous.
34) $f(x)=\frac{x^{3}+27}{x+3}$
35) $f(x)=\frac{x-6}{x^{2}-x-6}$
36) $f(x)=\frac{2 x-6}{|x-3|}$
$\begin{array}{lllll}-3 & 1 & 0 & 0 & 27\end{array}$
$f(x)=\frac{x-6}{(x-3)(x+2)}$
Discontinuous
Jump at $x=3$
$f(x)=\frac{(x+3)\left(x^{2}-3 x+9\right)}{(x+3)}$
Discontinuous
$f(x)=x^{2}-3 x+9$
Asymptote at $x=3$ and $x=-2$

Discontinuous
Hole ($-3,27$)
$g(x)\left\{\begin{array}{l}\frac{x^{3}+27}{x+3}, x \neq-3 \\ 27, \quad x=-3\end{array}\right.$

Determine whether the following piecewise function is continuous. Show all work that leads to you decision. (A sketch may be helpful in determining your answer) 37)

$$
\begin{align*}
& f(x)=\left\{\begin{array}{cc}
-3 & x \leq-1 \\
x^{3} & -1<x<2 \\
2 x+4 & x \geq 2
\end{array}\right. \\
& \text { at } x=-1 \\
& \text { at } x=2 \\
& \text { 2nd Eqn 3rd Eqn } \\
& (-1,-3) \quad(-1)^{3} \\
& (-1,-1) \tag{2,8}\\
& \text { (2) }{ }^{3} \quad 2(2)+4
\end{align*}
$$

Discontinuous (jump) at $x=-1$

Note: In addition to the y-values being equal, one (and only one) of the inequalities must contain an equal sign in order for the graph to be continuous at both $x=-1$ and $x=2$.
38)

$$
f(x)= \begin{cases}\frac{1}{x-4} & x<3 \\ 2 x-7 & x \geq 3\end{cases}
$$

The first equation is continuous everywhere but $x=4$, however since the domain is $x<3$, the graph is continuous everyone on its domain.
at $x=3$

$$
\begin{array}{ll}
\text { 1st eqn } & \text { 2nd eqn } \\
\frac{1}{3-4}=\frac{1}{-1}=-1 & 2(3)-7=6-7=-1
\end{array}
$$

Note: In addition to the y-values being equal, one (and only one) of the inequalities must contain an equal sign in order for the graph to be continuous at $x=3$.

For each of the following, find the value of ' a ' that will make $f(x)$ continuous for all values of x.
39) $f(x)=\left\{\begin{array}{cl}a x+1 & x<2 \\ a+\sqrt{x+14} & x \geq 2\end{array}\right.$
40) $f(x)= \begin{cases}a x^{2}-2 & x \leq-6 \\ -5 x-8 & x>-6\end{cases}$
$a(2)+1 \quad a+\sqrt{2+14}$
$a(-6)^{2}-2 \quad-5(-6)-8$
$2 a+1$

$$
a+\sqrt{16}
$$

$$
36 a-2 \quad 30-8
$$

$$
a+4
$$

$$
36 a-2=22
$$

$2 a+1=a+4$
$36 a=24$
$a=3$
$a=\frac{24}{36}$
$a=\frac{2}{3}$

